

MARCH 2014

A PRINCIPLED TECHNOLOGIES TEST REPORT
Commissioned by Red Hat, Inc.

BIG DATA TECHNOLOGY ON RED HAT ENTERPRISE LINUX:
OPENJDK VS. ORACLE JDK

Organizations that use Apache™ Hadoop to process very large amounts of data

demand the best performance possible from their infrastructures. The Java Virtual

Machine (JVM) you choose to pair with your operating system can affect how your

Hadoop deployment performs, and can also create or alleviate management headaches

for administrators.

In the Principled Technologies labs, we compared the performance of a Hadoop

deployment running on Red Hat Enterprise Linux using both OpenJDK and Oracle JDK.1

We found that the open-source OpenJDK performed comparably to Oracle JDK on all

Hadoop performance tests we ran. OpenJDK is distributed alongside the operating

system and requires no additional actions by administrators, making it a natural choice

for organizations wishing to standardize on open source software deployments that

include Red Hat Enterprise Linux and Hadoop.

1 OpenJDK is a trademark of Oracle, Inc.

http://www.principledtechnologies.com/

A Principled Technologies test report 2

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

APACHE HADOOP PERFORMANCE AND THE JVM
Apache Hadoop is an open-source, highly scalable, and reliable distributed data

storage and analytics engine used for storing and processing massive amounts of

information. Hadoop is highly available and performs advanced business analytics on

data to help organizations make decisions. Core Hadoop components are mostly written

in Java, and run on top of the JVM. In addition, the components include HDFS, the

Hadoop Distributed File System; MapReduce, a functional data processing framework

for share-nothing distributed data algorithms; and a number of Common utilities to

integrate HDFS and MapReduce and support workload and job processing. Because

Hadoop performance is closely tied to the performance of the underlying JVM,

optimizing the JVM for lower latency and better execution speed is crucial. The choice of

JVM can greatly affect the performance of the entire Hadoop deployment.

In our hands-on tests, we explored the effect this JVM choice has on Hadoop

performance, focusing on two market leaders, OpenJDK 7 and Oracle JDK 7. We

evaluated their relative performance on a reference Hortonworks Hadoop Data

Platform (HDP) 2.0 deployment running on Red Hat Enterprise Linux 6.5 on a six-node

reference implementation (see Appendix A for system configuration information).

We tested two areas within Hadoop where performance is critical and that are

therefore of interest to both IT managers and Big Data scientists wishing to optimize

standard Hadoop deployments:

 Core infrastructure

 Machine Learning (ML), essential for Big Data Analytics platforms

To measure Hadoop performance, we used the Intel® HiBench Sort and TeraSort

benchmarks for measuring infrastructure performance as well as the Mahout Bayes

classification and K-means clustering benchmarks for measuring performance of

machine learning tasks.

Because our goal was to measure only the relative performance of the JVMs for

each test that we performed, we used near out-of-box configurations for both the

operating system and Hadoop. In addition, we did not configure the HiBench workloads

to saturate the resources of the servers, but we instead chose workloads that used 60 to

80 percent of the CPU resources. We expect additional operating system, Hadoop, and

workload tunings to yield comparable performance boosts for both OpenJDK and Oracle

JDK. For details about the hardware we used, see Appendix A. For step-by-step details

on how we tested, see Appendix B.

A Principled Technologies test report 3

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

OpenJDK: Similar performance, better for management
For the Red Hat Enterprise Linux and Hortonworks HDP configurations we

tested, we found that Hadoop workloads performed about the same with either the

OpenJDK JVM or Oracle JVM. We expected this behavior based on other performance

comparison tests we have reported on in the past.2 From a manageability perspective,

we found OpenJDK convenient for Red Hat Enterprise Linux administrators to use in

their Hadoop deployments as it updates automatically as a component of the operating

system.

WHAT WE FOUND
Figure 1 shows the Hadoop performance results we obtained for four HiBench

benchmarks. They are plotted relative to the OpenJDK results for easy comparison.

OpenJDK and Oracle JVM performed similarly across the four Hadoop workloads with all

differences being under 8 percent. (See Figure 9 for details on the HiBench workloads.)

Figure 1: Relative comparison of OpenJDK and Oracle JDK on four Hadoop workloads: Sort, TeraSort,
Bayes Classification, and K-means Clustering (lower is better)

2 See our report “Performance Comparison of Multiple JVM implementations with Red Hat Enterprise Linux 6” available at
www.principledtechnologies.com/Red%20Hat/RHEL6_rhj_0613.pdf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sort TeraSort Bayes classifier K-means

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Relative Hadoop Performance

OpenJDK Oracle JDK

http://www.principledtechnologies.com/Red%20Hat/RHEL6_rhj_0613.pdf

A Principled Technologies test report 4

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

Using statistics for both JVMs, Figures 2 through 5 shows server-resource usage,

averaged over the four data nodes, during the median run of the Sort benchmark. We

chose to present the resource usage for this test because the difference in benchmark

duration was the greatest.

DataNode Statistics with OpenJDK DataNode Statistics with Oracle JDK

Figure 2: Comparison of average CPU usage during the Sort test for OpenJDK and Oracle JDK.

The charts compare average CPU, average total disk reads, average total disk

writes, and average outgoing network I/O. As can be observed, all performance graphs

have similar shapes for both JDKs.

DataNode Statistics with OpenJDK DataNode Statistics with Oracle JDK

Figure 3: Comparison of average disk-reads in megabytes per second during the Sort test for OpenJDK and Oracle JDK.

A Principled Technologies test report 5

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

DataNode Statistics with OpenJDK DataNode Statistics with Oracle JDK

Figure 4: Comparison of average disk-writes in megabytes per second during the Sort test for OpenJDK and Oracle JDK.

We have marked the two computational stages for this workload: the data-

preparation/generation stage and the data-transformation/sorting stage. See section

"Running one HiBench test" in Appendix B for more detail. On the other three

workloads, the use of OpenJDK or Oracle JDK in conjunction with Red Hat Enterprise

Linux resulted in similar performance across these Hadoop workloads.

DataNode Statistics with OpenJDK DataNode Statistics with Oracle JDK

Figure 5: Comparison of average incoming network I/O in megabytes per second during the Sort test for OpenJDK and Oracle
JDK.

A Principled Technologies test report 6

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

WHAT WE TESTED
For our tests, we used the YARN version of the Intel HiBench 2.2 suite to gauge

performance of a HDP 2.0 deployment. At this time, only six of the nine benchmarks

have been ported to YARN (that is, for Hadoop 2.0 and MapReduce version 2). Of these,

we tested Sort, TeraSort, Bayes Classifier and K-means clustering.3 To test the core

infrastructure we used Sort and TeraSort. Both of these tests are typical real-world

MapReduce jobs that transform data from one representation into another but differ in

the volume of data transformed. The Sort test processes large amounts of textual data

produced by the RandomTextWriter text data generator available in standard

Hadoop. TeraSort is a Big Data version of Sort. It sorts 10 billion 100-byte records

produced by the TeraGen generator program, also part of the standard Hadoop

distribution. The other two tests we chose Bayes Classification and K-means Clustering,

part of the Apache Mahout program suite, represent key machine learning tasks in Big

Data Analytics that use the MapReduce framework. Bayes Classification implements the

training component of Naïve Bayes, a classification algorithm used in data mining and

discovery applications. It takes as input a large set of randomly generated text

documents. K-means clustering implements the highly used and well-understood K-

means clustering algorithm operating on a large set of randomly generated numerical

multidimensional vectors with specific statistical distributions.

IN CONCLUSION
OpenJDK is an efficient foundation for distributed data processing and analytics

using Apache Hadoop. In our testing of a Hortonworks HDP 2.0 distribution running on

Red Hat Enterprise Linux 6.5, we found that Hadoop performance using OpenJDK was

comparable to the performance using Oracle JDK. Comparable performance paired with

automatic updates means that OpenJDK can benefit organizations using Red Hat

Enterprise Linux -based Hadoop deployments.

3 The YARN versions of Intel HiBench benchmarks are available in Intel’s GitHub HiBench source code repository. You can download
them from www.github.com/intel-hadoop/HiBench/tree/yarn

http://www.github.com/intel-hadoop/HiBench/tree/yarn

A Principled Technologies test report 7

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

APPENDIX A – SYSTEM CONFIGURATION INFORMATION
Figure 6 provides detailed configuration information for the test systems.

System
Dell™ PowerEdge™ R710
(Hadoop Master servers)

Dell PowerEdge R710
(Hadoop Slave servers)

Power supplies

Total number 2 2

Vendor and model number Dell N870P-S0 Dell N870P-S0

Wattage of each (W) 870 870

Cooling fans

Total number 5 5

Vendor and model number Dell RK 385-A00 Dell RK 385-A00

Dimensions (h × w) of each 2″ × 2″ × 1.5″ 2″ × 2″ × 1.5″

Volts 12 12

Amps 1.6 1.6

General

Number of processor packages 2 2

Number of cores per processor 6 6

Number of hardware threads per
core

2 2

CPU

Vendor Intel Intel

Name Xeon® Xeon

Model number X5670 X5670

Stepping 02 02

Socket type FCLGA1366 FCLGA1366

Core frequency (GHz) 2.93 2.93

Bus frequency (MHz) 3,200 3,200

L1 cache (KB) 192 192

L2 cache (KB) 1526 1526

L3 cache (KB) 12,288 12,288

Platform

Vendor and model number Dell PowerEdge R710 Dell PowerEdge R710

Motherboard model number 00NH4P 00NH4P

Motherboard chipset Intel 5520 Intel 5520

BIOS name and version 6.4.0 6.4.0

BIOS settings
Defaults + Power Setting to Maximum
Performance

Defaults + Power Setting to Maximum
Performance

Memory module(s)

Total RAM in system (GB) 96 48

Vendor and model number Hynix HMT31GR7BFR4A-H9 Samsung M393B1K70BH1-CH9

Type PC3-10600 PC3-10600

Speed (MHz) 1,333 1,333

Speed running in the system (MHz) 1,333 1,333

Timing/Latency (tCL-tRCD-tRP-
tRASmin)

9-9-9-36 9-9-9-36

A Principled Technologies test report 8

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

System
Dell™ PowerEdge™ R710
(Hadoop Master servers)

Dell PowerEdge R710
(Hadoop Slave servers)

Size (GB) 8 8

Number of RAM module(s) 12 6

Chip organization Double-sided Double-sided

Rank Dual Dual

Hard disk

Vendor and model number Seagate ST9146852SS Western Digital WD300BKHG-18A29V0

Number of disks in system 6 8

Size (GB) 146 300

Buffer size (MB) 16 16

RPM 15K 10K

Type SAS SAS

Disk Controller

Vendor and model Dell PERC 6/i Dell PERC 6/i

Controller cache (MB) 256 256

Controller Driver (Module) megaraid_sas megaraid_sas

Controller Driver Version 06.700.06.00-rh1 06.700.06.00-rh1

Controller firmware 6.3.3.0002 6.3.3.0002

RAID configuration 3 RAID1 volumes of 2 disks each
1 RAID1 volume of 2 disks;
6 un-RAIDed disks

Operating system

Name Red Hat Enterprise Linux 6.5 Red Hat Enterprise Linux 6.5

File system ext4 ext4

Kernel 2.6.32-431.3.1.el6.x86_64 2.6.32-431.3.1.el6.x86_64

Language English English

Graphics

Vendor and model number Matrox® MGA G200eW WPCM450 Matrox MGA G200eW WPCM450

Graphics memory (MB) 8 8

Ethernet

Vendor and model number
4 × Broadcom® 5709C NetXtreme® II t
1GigE

4 × Broadcom 5709C NetXtreme II t
1GigE

Type PCI Express PCI Express

Driver (Module) bnx2 bnx2

Driver Version 2.2.3 2.2.3

Optical drive(s)

Vendor and model number TEAC DVD-ROM DV28SV TEAC DVD-ROM DV28SV

Type SATA SATA

USB ports

Number 4 external 4 external

Type 2.0 2.0

Figure 6: System configuration information for the test systems.

A Principled Technologies test report 9

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

APPENDIX B – HOW WE TESTED
This section captures the installation and configuration of a six-node Hadoop cluster that has two master nodes

and four data nodes. We followed closely the Red Hat Reference Architecture for running HDP 2.0 on Red Hat Enterprise

Linux 6 with OpenJDK.4

One master node (named “master1”) ran the HDFS NameNode service. The second master node (named

“master2”) was a back-up NameNode that ran the YARN resource manager and MapReduce job-history manager.

The four data nodes (named “data1”, “data2”, “data3”, and “data4”) ran the HDFS DataNode service and the

YARN distributed NodeManager.

Figure 7: Schematic of the six-node Hadoop cluster used in our tests. The light blue lines denote the network connections for the
Hadoop-cluster network. Similarly, the grey lines denote the server-management network.

Figure 8 shows the hardware we used in our testing. We used six Dell PowerEdge R710 servers – two master

nodes and four data nodes. Each server had six or eight 300GB SAS disks, a PowerEdge Raid Controller (PERC), two Intel

Xeon processors X5670, one four-port GbE NIC, and 48GB RAM.

The resources required by the two master nodes differed from those of the data nodes, so we discussed those

separately.

4"Exploring the next generation of Big Data solutions with Hadoop 2: Deploying Hortonworks Data Platform 2.0 on Red
Hat Enterprise Linux 6 with OpenJDK", version 1.2.

A Principled Technologies test report 10

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

Figure 8: The physical hardware used for the six-node Hadoop cluster in our tests.

Configuring the master nodes
Each master node had 96GB RAM and six disks. The operating system was installed on a mirrored pair of disks

(RAID 1). The remaining four disks were configured as two mirrored pairs because the Hadoop metadata stored therein

must be protected from loss.

Configuring the data nodes
Each data node had 48GB RAM and eight disks. The operating system was installed on a mirrored pair of disks

(RAID 1). We presented the remaining six disks to the system as JBODs (without RAID) to increase I/O by providing the

maximum number of spindles for the configuration.

Configuring networking
We used two subnets: one for cluster traffic and one for access to the servers. Consequently, we used two

network ports on each server. In our tests, the cluster subnet was 192.168.100.0/24 and the data subnet was

192.168.200.0/24.

Installing Red Hat Enterprise Linux 6
The first step in setting up the six-node Hortonworks Data Platform 2.0 cluster is to install the Red Hat Enterprise

Linux 6.5 operating system on the servers.

A Principled Technologies test report 11

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

For each server, master and slave, install the Red Hat Enterprise Linux 6.5 operating system. Prior to starting the

installation, you should have a designated list of host names and IP addresses.

For definiteness, this section instructs how to install Red Hat Enterprise Linux 6.5 from the full installation DVD,

but you could also install the operating system via PXE, kickstart file, or satellite server.

1. Insert the Red Hat Enterprise Linux 6.5 installation DVD into the server’s DVD drive.
2. On the Welcome to Red Hat Enterprise Linux 6.5 screen, press Enter to boot the installer.
3. On the Welcome to Red Hat Enterprise Linux for x86_64 screen, select SKIP, and press Enter.
4. On the Red Hat Enterprise Linux 6 screen, click Next.
5. On the installation-language screen, select your language (this guide uses English), and click Next.
6. On the keyboard-selection screen, select the correct format, and click Next.
7. On the Storage Devices screen, select Basic Storage Devices, and click Next.
8. If a pop-up window appears with a Storage Device Warning, click Yes, discard any data.
9. On the Name This Computer screen, enter the server’s name, and click Configure Network.
10. On the Network Connections pop-up screen, select your management interface (e.g., eth0), and click Edit.
11. On the Editing eth0 pop-up screen, check the Connect automatically box, and select the IPv4 Settings tab.

Change Method to Manual. Click Add, and enter the IP address, Netmask, and Gateway. Enter the IP address of
your DNS server. Click Apply to close the pop-up screen.

12. Back on the Network Connections pop-up screen, select the cluster-interconnect interface (e.g., eth1), and click
Edit.

13. On the Editing eth1 pop-up screen, check the Connect automatically box, and select the IPv4 Settings tab.
Change Method to Manual. Click Add, and enter the IP address, Netmask, and Gateway. Enter the IP address of
your DNS server. Click Apply to close the pop-up screen.

14. On the Network Connections pop-up screen, click Close, and click Next.
15. On the Time Zone screen, select your time zone, and click Next.
16. On the administrator’s password page, enter the root password, and click Next.
17. On the Installation Type screen, keep the default installation type, check the Review and modify partitioning

layout box, and click Next.
18. On the Device assignment screen, select the server’s OS disk from the list in the left column, and click the upper

arrow to designate the disk as the target device. Click Next.
19. On the Review and Modify Partitioning screen, delete the /home logical volume and assign the resulting free

space to the root partition. When finished, click Next.
20. On the Format Warnings pop-up screen, click Format.
21. On the Writing storage configuration to disk screen, click Write changes to disk.
22. On the Boot loader selection screen, keep the defaults, and click Next.
23. On the Red Hat Enterprise Linux software installation screen, select Basic Server, and click Next.
24. When the installation completes, click Reboot.

Configuring the hosts
This section shows how to perform post-installation configuration steps for all hosts at once by running a

sequence of bash commands from one of the servers rather than configuring them one at a time. The post-installation

configurations include:

 Configuring NTP

 Configuring the file systems

 Disabling unneeded services

 Configuring the tuned package

 Installing OpenJDK

A Principled Technologies test report 12

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

 Adding the IP address and hostnames to /etc/hosts

Configuring NTP
1. The servers’ clocks must be synchronized to a common time source in order for the cluster to function properly.

Modify /etc/ntp.conf to add the IP address of your local NTP server (for example, 192.168.200.20) as in the
following line:
server 192.168.200.20 iburst

2. Start the NTP daemon on each server; for example,
chkconfig ntpd on

service ntpd start

Configuring the file system
Partition, format, and mount the data disks on each server. The servers' operation and application filesystem is

on disk /dev/sda. The Hadoop data disks on the master servers are /dev/sdb and /dev/sdc, and on the slave servers are

/dev/sdb, /dev/sdc, /dev/sdd, /dev/sde, /dev/sdf, and /dev/sdg.

1. On each node, partition and format the first data disk (sdb), and mount its filesystem on directory /grid01.
parted /dev/sdb mklabel gpt

parted /dev/sdb mkpart primary "1 -1"

mkfs.ext4 /dev/sdb1

mkdir /grid01

mount /dev/sdb1 /grid01

echo "/dev/sdb1 /grid01 ext4 defaults 0 0" >> /etc/fstab

/dev/sdc1 /grid02 ext4 defaults 0 0

2. On the master nodes, repeat step 1 for the second data disk (sdc).
3. On each slave node, repeat step 1 for the remaining data disks (sdc, sdd, sde, sdf, and sdg).

Disabling unneeded services
Disable unneeded services on each server.

for i in autofs cups nfslock portreserve postfix rpcbind rpcgssd iptables

ip6tables; do

 chkconfig $i off

 service $i stop

done

Configuring the tuned package
On each server, install and configure the tuned package to use the enterprise-storage profile.

yum install tuned

tuned-adm profile enterprise-storage

Installing OpenJDK
To install HDP 2.0, we installed the OpenJDK platform. Instructions for installing the Oracle JDK for the

performance test are in the section “Changing the Java platform from OpenJDK to Oracle JDK.”

1. On each server, install OpenJDK 1.7.0 b51.

yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel

2. On each server, link the OpenJDK directory to /usr/java/default, the HDP default for JAVA_HOME.

mkdir /usr/java

ln -s /usr/lib/jvm/java-1.7.0-openjdk-1.7.0.*.x86_64 /usr/java/default

Adding the IP address and hostnames to /etc/hosts
We used the hosts file rather than a DNS server to provide name resolution. On each server, add the following

to the end of the file /etc/hosts.

A Principled Technologies test report 13

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

cluster network

192.168.100.51 master1 # name node

192.168.100.52 master2 # secondary name node and YARN master

192.168.100.61 data1 # data node

192.168.100.62 data2 # data node

192.168.100.63 daat3 # data node

192.168.100.64 data4 # data node

management network

192.168.200.51 master1m # name node

192.168.200.52 master2m # secondary name node and YARN master

192.168.200.61 data1m # data node

192.168.200.62 data2m # data node

192.168.200.63 daat3m # data node

192.168.200.64 data4m # data node

Installing Hortonworks Data Platform 2.0 on the servers
For further detail on installing and configuring Hortonworks Data Platform, see "Installing HDP Manually"

(chapters 2-4).5 While it is possible to install Hortonworks Data Platform in other ways, the method we used has the

advantage that the RPM installation creates the Hadoop user accounts and groups along with system configuration files

controlling system resources.

Installing Hadoop software
1. Download the HDP yum repo file from Hortonworks and copy it to each of the servers.

wget http://public-repo-1.hortonworks.com/HDP/centos6/2.x/updates/2.0.6.0/hdp.repo

2. Install the Hadoop software (HDFS, YARN, MapReduce, Mahout, compression and SSL libraries) on each server.
yum install \

 hadoop hadoop-hdfs hadoop-libhdfs hadoop-client\

 hadoop-yarn hadoop-mapreduce mahout\

 openssl snappy snappy-devel lzo lzo-devel hadoop-lzo hadoop-lzo-native

ln -sf /usr/lib64/libsnappy.so /usr/lib/hadoop/lib/native/.

Server modifications for HDFS, YARN, and MapReduce
1. If necessary, delete the previous Hadoop data and log directories by running these commands on each server.

rm -rf /grid0?/hadoop/

rm -rf /var/log/hadoop/hdfs

rm -rf /var/log/hadoop/yarn

rm -rf /var/log/hadoop/mapred

rm -rf /var/run/hadoop/hdfs

rm -rf /var/run/hadoop/yarn

rm -rf /var/run/hadoop/mapred

2. On each server, create the first set of HDFS metadata directories under /grid01.
mkdir -p /grid01/hadoop/hdfs/nn

mkdir -p /grid01/hadoop/hdfs/snn

chown -R hdfs:hadoop /grid01/hadoop/hdfs/nn

chown -R hdfs:hadoop /grid01/hadoop/hdfs/snn

chmod -R 755 /grid01/hadoop/hdfs/nn

chmod -R 755 /grid01/hadoop/hdfs/snn

3. On each slave server, create the HDFS and YARN data directories under /grid01.

5 docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/index.html

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/index.html

A Principled Technologies test report 14

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

mkdir -p /grid01/hadoop/hdfs/dn

mkdir –p /grid01/hadoop/yarn/local

mkdir –p /grid01/hadoop/yarn/logs

chown -R hdfs:hadoop /grid01/hadoop/hdfs/dn

chown -R yarn:hadoop /grid01/hadoop/yarn/local

chown -R yarn:hadoop /grid01/hadoop/yarn/logs

chmod -R 750 /grid01/hadoop/hdfs/dn

chmod -R 750 /grid01/hadoop/yarn/local

chmod -R 750 /grid01/hadoop/yarn/logs

4. On each master server, repeat step 2 for the second data directory, /grid02.
5. On each slave server, repeat steps 2 and 3 for the remaining data directory, /grid02, /grid03, /grid04, /grid05,

/grid06.
6. On the second master server, create the directories for the YARN resource manager.

mkdir -p /grid01/hadoop/yarn/local

mkdir -p /grid01/hadoop/yarn/logs

mkdir -p /grid02/hadoop/yarn/local

mkdir -p /grid02/hadoop/yarn/logs

chown -R yarn:hadoop /grid0?/hadoop/yarn/lo*

chmod -R 750 /grid0?/hadoop/yarn/lo*

7. On all servers, add the YARN, and mapred users to the hdfs group.

usermod -G hdfs yarn

usermod -G hdfs mapred

8. On each server, correct the file ownership and permissions for a YARN health-check command.

chown -R root:hadoop /usr/lib/hadoop-yarn/bin/container-executor

chmod -R 6050 /usr/lib/hadoop-yarn/bin/container-executor

Configuring Hadoop
The Hadoop components, HDFS, YARN, and MapReduce, require configuration to specify the nodes and their

roles as well as the location of each node's HDFS files. Hortonworks provides a sample set of configuration files that you

can readily modify for your cluster. You can always find the up-to-date Internet location of the tar archive for these

helper files in Hortonworks HDP documentation; see Hortonworks Data Platform: Installing HDP Manually, section 1.8.

1. Download Companion Files.6 We used version 2.0.6.101 of the helper files. Download the helper files from

Hortonworks.

wget http://public-repo-1.hortonworks.com/HDP/tools/2.0.6.0/\

hdp_manual_install_rpm_helper_files-2.0.6.101.tar.gz

2. Extract the files.
tar zxf hdp_manual_install_rpm_helper_files-2.0.6.101.tar.gz

3. On each server, delete the contents of the Hadoop core configuration directory.

rm /etc/hadoop/conf/*

4. On one server, copy the contents of the core Hadoop configuration files to /etc/hadoop/conf.

cd hdp_manual_install_rpm_helper_files-2.0.6.101/configuration_files/core_hadoop

cp * /etc/hadoop/conf

cd /etc/hadoop/conf

5. In the file core-site.xml, replace every occurrence of the token TODO-NAMENODE-HOSTNAME:PORT with
master1:8020.

6 docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/rpm-chap1-9.html

http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.9.0/bk_installing_manually_book/content/rpm-chap1-9.html

A Principled Technologies test report 15

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

6. In the file hdfs-site.xml, perform this sequence of changes:

a. Replace every occurrence of the token TODO-NAMENODE-HOSTNAME with master1.

b. Replace every occurrence of the token TODO-NAMENODE- SECONDARYNAMENODE with master2.

c. Replace every occurrence of the token TODO-DFS-DATA-DIR with
file:///grid01/hadoop/hdfs/dn,file:///grid02/hadoop/hdfs/dn,file:///grid03/hadoo

p/hdfs/dn,file:///grid04/hadoop/hdfs/dn,file:///grid05/hadoop/hdfs/dn,file:///gr

id06/hadoop/hdfs/dn

d. Replace every occurrence of the token TODO-DFS-NAME-DIR with
grid01/hadoop/hdfs/nn,/grid02/hadoop/hdfs/nn.

e. Replace every occurrence of the token TODO-DFS-NAME-DIR with
/grid01/hadoop/hdfs/nn,/grid02/hadoop/hdfs/nn

7. In the file yarn-site.xml, replace every occurrence of the token TODO-RMNODE-HOSTNAME with master2.

8. In the file mapred-site.xml, replace every occurrence of the token TODO-JOBHISTORYNODE-HOSTNAME with
master2.

9. In the files container-executor.cfg and yarn-site.xml, replace every occurrence of the token TODO-
YARN-LOCAL-DIR with /grid01/hadoop/yarn/local,/grid02/hadoop/yarn/local al.

10. In the file container-executor.cfg, replace every occurrence of the token TODO-YARN-LOG-DIR with
/grid01/hadoop/yarn/logs,/grid02/hadoop/yarn/logs.

11. In the file yarn-site.xml, replace every occurrence of the token TODO-YARN-LOCAL-LOG-DIR with
/grid01/hadoop/yarn/logs,/grid02/hadoop/yarn/logs.

12. Copy the updated Hadoop configuration (HDFS, YARN, and MapReduce) to the remaining servers with scp. For
example, for a server named NODE.
scp /etc/hadoop/conf/* NODE:/etc/hadoop/conf/

Starting Hadoop for the first time
Initializing HDFS

1. Log onto the namenode master as user hdfs.

2. Format HDFS.

hdfs namenode -format

3. Start HDFS by running the commands in steps 1 through 4 in the “Starting HDFS” section.

Initializing YARN and the Job History service
1. With HDFS running, create and configure directories on HDFS for the job-history service.
2. Log onto the second master server as user hdfs, and run the following commands.

hdfs dfs -mkdir –p /mr-history/tmp

hdfs dfs -mkdir -p /mr-history/done

hdfs dfs -mkdir -p /app-logs

hdfs dfs -chmod -R 1777 /mr-history/tmp

hdfs dfs -chmod -R 1777 /mr-history/done

hdfs dfs -chmod -R 1777 /app-logs

hdfs dfs -chown -R mapred:hdfs /mr-history

hdfs dfs -chown yarn /app-logs

3. Start YARN by running the commands in steps 1 through 3 of the Starting YARN section.

A Principled Technologies test report 16

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

Starting Hadoop
Hadoop is started by first starting HDFS, pausing for 30 seconds, and then starting YARN. See the next two

sections for instructions for starting HDFS and YARN.

Starting HDFS
1. Log onto each of the servers as user hdfs.
2. Run the following command on the namenode master.

/usr/lib/hadoop/sbin/hadoop-daemon.sh start namenode

3. Run the following command on the secondary-namenode master.
/usr/lib/hadoop/sbin/hadoop-daemon.sh start secondarynamenode

4. Run the following command on each slave server.
/usr/lib/hadoop/sbin/hadoop-daemon.sh start datanode

Starting YARN
HDFS must be running before starting YARN. See the previous section for instructions for starting HDFS.

1. Log onto the second master server as user yarn and run the following commands on the secondary master
server.
export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

/usr/lib/hadoop-yarn/sbin/yarn-daemon.sh start resourcemanager

2. Log off the second master server and login again as user mapred to run the following commands.
export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

/usr/lib/hadoop-mapreduce/sbin/mr-jobhistory-daemon.sh start historyserver

3. Log onto the slave servers as user yarn in order to start the local YARN resource node-managers, and run the
following commands on each.
export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

/usr/lib/hadoop-yarn/sbin/yarn-daemon.sh start nodemanager"'

Stopping Hadoop
Hadoop is stopped by stopping YARN and then stopping HDFS. See the next two sections for instructions for

stopping HDFS and YARN.

Stopping YARN
1. Log onto the slave servers as user yarn and run the following commands on each.

export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

/usr/lib/hadoop-yarn/sbin/yarn-daemon.sh stop nodemanager

2. Log onto the second master server as user mapred to run the following commands.
export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

/usr/lib/hadoop-mapreduce/sbin/mr-jobhistory-daemon.sh stop historyserver

3. Log off the second master server and login again as user yarn to run the following commands.
export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

/usr/lib/hadoop-yarn/sbin/yarn-daemon.sh stop resourcemanager

Stopping HDFS
1. Log onto the servers as user hdfs.
2. On the slave servers, run the following command.

usr/lib/hadoop/sbin/hadoop-daemon.sh stop datanode

3. On the secondary-namenode master server, run the following command.
/usr/lib/hadoop/sbin/hadoop-daemon.sh stop secondarynamenode

4. On the namenode master server, run the following command.
/usr/lib/hadoop/sbin/hadoop-daemon.sh stop namenode

A Principled Technologies test report 17

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

Installing HiBench
1. Download the HiBench Suite from github.com/intel-hadoop/HiBench/tree/yarn.

2. Copy the HiBench ZIP archive to one of the master nodes.

3. On the master node, unzip the HiBench archive under /opt.

cd /opt

unzip /tmp/HiBench-yarn.zip

4. Modify the default HiBench configuration for HDP 2 in the file /opt/HiBench-yarn/bin/hibench-config.sh : change
HADOOP_CONF_DIR= to HADOOP_CONF_DIR=/etc/hadoop/conf, and change HADOOP_EXAMPLES_JAR= to
HADOOP_EXAMPLES_JAR=/usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples-2.2.0.2.0.6.0-101.jar.

5. Change the ownership of the HiBench files to user hdfs.

chown –R hdfs /opt/HiBench-yarn

Running HiBench Sort, TeraSort, Bayes and K-means tests
The HiBench tests are performed as user hdfs from the namenode. The default dataset sizes were modified to

use more of the cluster's resources.

The changes to the configurations are as follows:

1. For the Sort test, the dataset size is increased by a factor of 10 to 24,000,000,000 bytes: In the file
/opt/HiBench-yarn/sort/conf/configure.sh, change the line DATASIZE=2400000000 to
DATASIZE=24000000000.

2. For the Bayes test, the number of document pages in the dataset is increased by a factor of 2.5 to 100,000: : In
the file /opt/HiBench-yarn/bayes/conf/configure.sh, change the line PAGES=40000 to
PAGES=100000.

3. For the TeraSort test, the number of document pages in the dataset is increased by a factor of 2.5 to 100,000: :
In the file /opt/HiBench-yarn/terasort/conf/configure.sh, change the line DATASIZE=100000000
to DATASIZE=2000000000, and change the line NUM_MAPS=96 to NUM_MAPS=180.

4. For the K-means test, modify the file /opt/HiBench-yarn/kmenas/conf/configure.sh as follows: change
the line NUM_OF_CLUSTERS=5 to NUM_OF_CLUSTERS=32, the line NUM_OF_SAMPLES=3000000 to
NUM_OF_SAMPLES=200000000, the line SAMPLES_PER_INPUTFILE=600000 to
SAMPLES_PER_INPUTFILE=40000000, the line DIMENSIONS=20 to DIMENSIONS=4.

Changing the Java platform from OpenJDK to Oracle JDK
The Hadoop configuration used the OpenJDK and can be used directly for performance test. To run performance

tests with the Oracle JDK, we removed OpenJDK, installed the Oracle JDK, and rebuilt HDFS.

1. On all servers, stop YARN by following the instruction in section “Stopping YARN.”
2. On all servers, stop HDFS by following the instructions in section “Stopping HDFS.”
3. On all servers, remove OpenJDK.

yum remove yum install java-1.7.0-openjdk java-1.7.0-openjdk-devel

rm /usr/java/default

4. On all servers, install Oracle JDK 1.7.0 b51 from the Red Hat Supplementary repository.
yum install java-1.7.0-oracle-1.7.0.51-1jpp.1.el6_5.x86_64\

 java-1.7.0-oracle-devel1.7.0.51-1jpp.1.el6_5.x86_64

ln -s /usr/lib/jvm/java-1.7.0-oracle-1.7.0.51.x86_64 /usr/java/default

5. Destroy and recreate the Hadoop directories and log files by performing steps 1 through 6 in section “Server
modifications for HDFS, YARN, and MapReduce.”

6. Reformat HDFS and YARN by following the instructions in sections “Initializing HDFS and “Initializing YARN and

https://github.com/intel-hadoop/HiBench/tree/yarn

A Principled Technologies test report 18

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

the Job History service.”
7. Start YARN following the instructions in section “Starting YARN.”

Running one HiBench test
The following bash script, run-hibench.sh, was used to perform complete runs for the HiBench tests. In each

case, the script performs the following steps:

1. Before the HiBench data is created, the page cache is cleared on the six servers by running an auxiliary script
included at the end of this section. This script must be run as root. The sudo command was used to affect this.

2. The HiBench data is prepared.
3. The page cache is cleared again before the HiBench algorithm is started.
4. Pause for 120 seconds.
5. Run the HiBench algorithm.
6. Print the HiBench statistics.

The bash script sort-run.sh for running the full Sort test follows.

#!/bin/bash

run-hibench.sh

run the HiBench Sort test, specified by the argument

if ["$#" -ne 1]; then

 echo "Usage: $0 <name of test>"; exit 1

fi

TEST=$1

HIBENCH_DIR=/opt/HiBench-yarn

echo "Run of HiBench test $TEST"; date; echo " clearing the cache"

sudo sh /root/scripts/clear-cache.sh

echo; echo "Pausing for 50 seconds"; sleep 50

echo; echo Starting data preparation...; date; echo

$HIBENCH_DIR/$TEST/prepare.sh; echo; date; echo

echo Data prep completed

echo " clearing the cache before the main run"

sudo sh /root/scripts/clear-cache.sh

echo; echo "Pausing for 120 seconds"; sleep 120 ;

echo; echo Starting data-transformation...; date; echo

MAHOUT_HOME=/usr/lib/mahout \

 $HIBENCH_DIR/$TEST/bin/run.sh; echo; date; echo

echo Run completed; echo

echo HiBench statistics

head -n 1 $HIBENCH_DIR/hibench.report

tail -n 1 $HIBENCH_DIR/hibench.report

echo Done

The bash script clear-cache.sh, used by sort-run.sh and bayes-run.sh, follows.

#!/bin/bash

clear-cache.sh

clear the page cache on the Hadoop nodes

for i in master1 master2 data1 data2 data3 data4 ; do

 ssh $i 'sync; echo 3 > /proc/sys/vm/drop_caches ; sync'

done

A Principled Technologies test report 19

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

Detailed Hadoop results for OpenJDK and Oracle JDK on four HiBench workloads
Figure 9 provides the detailed results we obtained for all runs of the HiBench benchmarks, on both OpenJDK and

Oracle JVMs. For each run, we show the input size in KB, the duration of the run in seconds, and the total throughput

per node in KB per second. These items show the problem size, its processing time and the corresponding average data-

volume movement per node, respectively. For each benchmark and JDK permutation, we selected a median value across

all runs. Those runs are highlighted in yellow. The variation in HiBench scores for the various tests was similar (about half

of one percent) with the exception of the Sort test with Oracle JDK. We found the variation of Sort scores with Oracle

JDK was about 10 percent over 12 runs as compared to 2 percent for Sort with OpenJDK. For this reason, and to ensure a

more representative median run, we tested seven runs for Oracle JDK versus five runs for OpenJDK on the Sort test.

OpenJDK Oracle JDK

Test
Input size

(KB)
Duration
(seconds)

Throughput/node
(KBps)

Input size
(KB)

Duration
(seconds)

Throughput/node
(KBps)

Sort

Run 1 96,239,051 916.7 26,245.2 96,239,145 1,261.0 19,079.3

Run 2 96,239,051 936.2 25,699.7 96,239,047 973.3 24,719.5

Run 3 96,239,051 1,212.3 19,846.8 96,239,188 1,133.7 21,223.2

Run 4 96,239,124 962.3 25,002.0 96,239,121 1,127.7 21,334.4

Run 5 96,239,081 1,142.9 21,052.3 96,239,271 925.2 26,004.0

Run 6 96,239,020 1,038.4 23,169.4

Run 7 96,239,126 863.1 27,877.0

TeraSort

Run 1 195,312,500 2,307.5 21,160.3 195,312,500 2,267.7 21,532.0

Run 2 195,312,500 2,094.7 23,310.8 195,312,500 2,349.6 20,781.5

Run 3 195,312,500 2,284.7 21,371.5 195,312,500 2,375.5 20,555.0

Bayes

Run 1 437,075 1,046.3 104.4 437,075 987.4 110.7

Run 2 437,075 1,043.1 104.8 437,075 972.0 112.4

Run 3 437,075 1,093.0 100.0 437,075 990.7 110.3

K-means

Run 1 50,000,007 2,364.2 5,287.2 50,000,007 2,342.9 5,335.4

Run 2 50,000,007 2,355.6 5,306.6 50,000,007 2,359.1 5,298.7

Run 3 50,000,007 2,368.4 5,277.9 50,000,007 2,348.8 5,321.9

Figure 9: Detailed Hibench results for Sort, TeraSort, Bayes Classification, and K-means Clustering.

A Principled Technologies test report 20

Big Data Technology on Red Hat Enterprise Linux:
OpenJDK vs. Oracle JDK

ABOUT PRINCIPLED TECHNOLOGIES

Principled Technologies, Inc.
1007 Slater Road, Suite 300
Durham, NC, 27703
www.principledtechnologies.com

We provide industry-leading technology assessment and fact-based
marketing services. We bring to every assignment extensive experience
with and expertise in all aspects of technology testing and analysis, from
researching new technologies, to developing new methodologies, to
testing with existing and new tools.

When the assessment is complete, we know how to present the results to
a broad range of target audiences. We provide our clients with the
materials they need, from market-focused data to use in their own
collateral to custom sales aids, such as test reports, performance
assessments, and white papers. Every document reflects the results of
our trusted independent analysis.

We provide customized services that focus on our clients’ individual
requirements. Whether the technology involves hardware, software, Web
sites, or services, we offer the experience, expertise, and tools to help our
clients assess how it will fare against its competition, its performance, its
market readiness, and its quality and reliability.

Our founders, Mark L. Van Name and Bill Catchings, have worked
together in technology assessment for over 20 years. As journalists, they
published over a thousand articles on a wide array of technology subjects.
They created and led the Ziff-Davis Benchmark Operation, which
developed such industry-standard benchmarks as Ziff Davis Media’s
Winstone and WebBench. They founded and led eTesting Labs, and after
the acquisition of that company by Lionbridge Technologies were the
head and CTO of VeriTest.

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

Disclaimer of Warranties; Limitation of Liability:
PRINCIPLED TECHNOLOGIES, INC. HAS MADE REASONABLE EFFORTS TO ENSURE THE ACCURACY AND VALIDITY OF ITS TESTING, HOWEVER,
PRINCIPLED TECHNOLOGIES, INC. SPECIFICALLY DISCLAIMS ANY WARRANTY, EXPRESSED OR IMPLIED, RELATING TO THE TEST RESULTS AND
ANALYSIS, THEIR ACCURACY, COMPLETENESS OR QUALITY, INCLUDING ANY IMPLIED WARRANTY OF FITNESS FOR ANY PARTICULAR PURPOSE.
ALL PERSONS OR ENTITIES RELYING ON THE RESULTS OF ANY TESTING DO SO AT THEIR OWN RISK, AND AGREE THAT PRINCIPLED
TECHNOLOGIES, INC., ITS EMPLOYEES AND ITS SUBCONTRACTORS SHALL HAVE NO LIABILITY WHATSOEVER FROM ANY CLAIM OF LOSS OR
DAMAGE ON ACCOUNT OF ANY ALLEGED ERROR OR DEFECT IN ANY TESTING PROCEDURE OR RESULT.

IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES, INC. BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH ITS TESTING, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL PRINCIPLED TECHNOLOGIES,
INC.’S LIABILITY, INCLUDING FOR DIRECT DAMAGES, EXCEED THE AMOUNTS PAID IN CONNECTION WITH PRINCIPLED TECHNOLOGIES, INC.’S
TESTING. CUSTOMER’S SOLE AND EXCLUSIVE REMEDIES ARE AS SET FORTH HEREIN.

http://www.principledtechnologies.com

