

JULY 2021

A PRINCIPLED TECHNOLOGIES REPORT
Commissioned by Intel

Save on uptime and licensing costs by upgrading to Amazon EC2
instances with newer processors and fewer vCPUs

Organizations looking for ways to save money on cloud expenses should consider upgrading their
instances to newer hardware with fewer vCPUs. Doing so could enable a company to achieve close to their
current level of work while spending less money overall.

Principled Technologies compared the MySQL online transaction processing (OLTP) performance of
two series of instances for Amazon EC2:

• Older M4 series instances featuring Intel Xeon E5 v4 processors
• Newer R5n series instances featuring 2nd Generation Intel Xeon Scalable processors and half the

number of vCPUs while maintaining the same amount of memory.

We found that a newer 32vCPU R5n instance performed nearly the same level of performance as an

older M4 instance with twice the number of vCPUs, with only a 7.6 percent difference in the rate of
transactions per minute each instance achieved.

HOW WE TESTED

Below are the basic specifications for the Amazon EC2 instances we tested. For more detailed
hardware information on each instance, see Appendix A: Hardware disclosure.

 m4.16xlarge instance r5n.8xlarge instance

Processor Intel Xeon E5 v4 processor 2nd Generation Intel Xeon
Scalable processor

vCPU count 64 32

Memory (GB) 256 256

Database size
(Warehouse/GB)

1,600 / 141 1,600 / 141

Region us-east-1f us-east-1f
 Table 1. Amazon EC2 instance specifications. Source: Principled Technologies.

To assess each instance’s MySQL database performance, we used a TPC-C-like OLTP workload from

the HammerDB benchmarking suite called TPROC-C. Even though the HammerDB developers derived this
workload from the TPC-C standard, it is not a full implementation of TPC specifications. Therefore, the results
in this paper are not directly comparable to officially published TPC results.

A Principled Technologies report 2

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

To ensure that the processors in each instance bore a heavier load than
the storage drives, we sized the databases to fit within the allocated RAM for
each instance. Though this is not always possible, we typically find that sizing a
database to fit within RAM can support good performance while lowering the
cost of cloud storage.

WHAT WE FOUND
About the results

Table 2 compares the OLTP performance hourly uptime cost (as of June 17,
2021) of each Amazon EC2 instance we tested.

 m4.16xlarge
instance

r5n.8xlarge instance r5n.8xlarge
comparison

OLTP performance
(average transactions per
minute)

1,312,236 1,212,344 -1.076x

On-demand cost per hour
(USD)

$3.20 $2.384 1.24x

 Table 2: Performance (transactions per minute) and hourly cost (USD) data for the older
 m4.16xlarge and newer r5n.8xlarge instances we tested. Source: Principled Technologies.

Despite having half as many vCPUs, the newer R5n instance processed a

comparable rate of transactions per minute as the older M4 instance (0.924x the rate).
Because the newer, smaller R5n instance costs 0.755x as much as the older M4 instance,
we calculate that the new instance delivered a 1.24x higher processing rate for each
dollar spent on instance uptime—or, a 1.24x better value.

CONCLUSION
In our tests, we found that newer R5n instances featuring 2nd Generation Intel

Xeon Scalable processors delivered a 24.04 higher processing rate per dollar of hourly
uptime cost than older M4 instances with Intel Xeon E5 v4 processors and twice as
many vCPUs. Our results demonstrate that organizations who choose to upgrade to
newer instances with fewer vCPUs may be able to save money by completing their
current level of work for lower cost. Organizations paying a per-vCPU licensing cost for
software may also save money by reducing the number of vCPUs in each of their virtual
servers.

A Principled Technologies report 3

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

APPENDIX A – SYSTEM CONFIGURATION INFORMATION
Table 3 provides detailed configuration information for the test systems.

 m4.16xlarge instance R5n.8xlarge instance

Server configuration information
Tested by Principled Technologies Principled Technologies
Test date 11/02/2020 06/18/2021
CSP / Region us-east-1f us-east1-f
Workload & version HammerDB v3.3 TPC-C-Like HammerDB v3.3 TPC-C-Like
WL specific parameters 1,600 Warehouses

96 virtual users
1,600 Warehouses
96 virtual users

Iterations and result choice 3 runs, median 3 runs, median
Server platform m4.16xlarge r5n.8xlarge
BIOS name and version Xen 4.2.amazon, 8/24/2006 Amazon EC2 1.0, 10/16/2017
Operating system name and
version/build number

CentOS 8.2
4.18.0-193.19.1.el8_2.x86_64

CentOS 8.2
4.18.0-193.19.1.el8_2.x86_64

Date of last OS updates/patches
applied

11/02/2020 06/17/2021

Processor
Total memory in system (GB) 256 256
NVMe memory present? No No
Total memory (DDR+NVMe RAM) 256 256
General hardware
Storage: Network or Direct Attached Network Attached Network Attached
Network bandwidth per instance
(Gbps)

25 25

Storage bandwidth per instance
(Mbps)

10,000 6,800

Local storage - OS
Number of drives 1 1
Drive size (GB) 10 20
Drive information (speed, interface,
type)

gp2, EBS, 100/3000 IOPS gp2, EBS, 100/3000 IOPS

Local storage – Data drive
Number of drives 1 1
Drive size (GB) 512 512
Drive information (speed, interface,
type)

Io1, EBS, 16,000 IOPS Io1, EBS, 16,000 IOPS

Network adapter
Vendor and model Amazon Elastic Network Adapter Amazon Elastic Network Adapter
Number and type of ports 1x 25Gb 1x 25Gb
Table 3: System configuration information for the VMs we tested.

A Principled Technologies report 4

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

APPENDIX C – HOW WE TESTED
Overview

We compared Amazon EC2 instances featuring 2nd Generation Intel Xeon Scalable processors to instances
featuring Intel Xeon E5 v4 processors. We ran a TPC-C-like workload from HammerDB on MySQL to assess
the online transaction processing performance of each instance.

Creating the mysql instance
1. Log into AWS and navigate to the AWS Management Console.
2. Click on EC2
3. To open the Launch Instance wizard, click Launch instance, and select Launch instance from the dropdown

menu.
4. In the search window, type CentOS 8, and press Enter.
5. On the AWS Marketplace tab, click the Select button next to "CentOS 8 (x86_64) - with Updates HVM" by

Amazon Web Services. CentOS-8-ec2-8.2.2004-20200923-1.x86_64-471d022d-974f-4f9c-8e39-b00d9b583833-
ami-03b6a1d995f5a5146.4

6. On the Choose Instance Type tab, select r5n.8}xlarge , then click "Next: Configure Instance Details".
7. On the Configure Instance tab, set the following:
8. Number of instances: 1
9. Purchasing option: Leave unchecked
10. Network: Default VPC.
11. Subnet: Choose the region you're working in.
12. Auto-assign Public IP: Enable.
13. Placement Group: Leave unchecked.
14. Domain join directory: No Directory
15. IAM role: None
16. Shutdown behavior: Stop
17. Click Next: Add Storage.
18. On the Add Storage tab, set the following:
19. Size: 10GB
20. Volume Type: gp2
21. Delete on Termination: Checked
22. Encryption: Not Encrypted
23. Click Add New Volume
24. Size: 512GB
25. Volume Type: io1
26. IOPS: 16,000
27. Delete on Termination: Checked
28. Encryption: Not Encrypted
29. Click Next: Add Tags
30. On the Add Tags tab, add any appropriate tags, and click Next: Configure Security Group
31. On the Configure Security Group tab, set the following:
32. Create a new Security Group
33. Allow inbound traffic from members of the group.
34. Click Review and Launch.
35. On the Review Tab, click Launch.
36. Choose the appropriate option for the key pair, then click Launch Instances.

A Principled Technologies report 5

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

Creating the HammerDB 3.3 client instance
This section contains the steps we took to create our client instance for remotely running the HammerDB benchmark client
software.

1. Log into AWS, and navigate to the AWS Management Console.
2. Click EC2.
3. To open the Launch Instance wizard, click Launch instance, then select Launch instance from the dropdown

menu.
4. In the search window, type CentOS 8, and press Enter.
5. On the AWS Marketplace tab, click the Select button next to "CentOS 8 (x86_64) - with Updates HVM" by

Amazon Web Services. CentOS-8-ec2-8.2.2004-20200923-1.x86_64-471d022d-974f-4f9c-8e39-b00d9b583833-
ami-03b6a1d995f5a5146.4

6. On the Choose Instance Type tab, select m5n.2xlarge , then click "Next: Configure Instance Details".
7. On the Configure Instance tab, set the following:
8. Number of instances: 1
9. Purchasing option: Leave unchecked
10. Network: Default VPC.
11. Subnet: Choose the region you're working in.
12. Auto-assign Public IP: Enable.
13. Placement Group: Leave unchecked.
14. Capacity Reservation: Open
15. Domain join directory: No Directory
16. IAM role: None
17. Shutdown behavior: Stop
18. Click Next: Add Storage.
19. On the Add Storage tab, set the following:
20. Size: 10GB
21. Volume Type: gp2
22. Delete on Termination: Checked
23. Encryption: Not Encrypted
24. Click Next: Add Tags
25. On the Add Tags tab, add any appropriate tags, and click Next: Configure Security Group
26. On the Configure Security Group tab, set the following:
27. Select an existing security group
28. Chose the group you created for MySQL and HammerDB.
29. Click Review and Launch.
30. On the Review Tab, click Launch.
31. Choose the appropriate option for the key pair, then click Launch Instances.

Configuring CentOS 8 and installing MySQL on the mysql instance
1. Login to the MySQL instance via ssh.
2. Run the "mysql_host_prepare.sh" script: Disable SELINUX:

sudo ./mysql_host_prepare.sh
3. Shutdown the instance:

sudo poweroff

Configuring CentOS 8 and installing HammerDB 3.3 on the mysql-client instance
1. Log into the hammerdb instance via ssh.
2. Disable SELINUX.

sudo sed -I 's/SELINUX=enforcing/SELINUX=disabled/' /etc/selinux/config
sudo setenforce 0

A Principled Technologies report 6

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

3. Turn off SSH strict host key checking:
echo 'StrictHostKeyChecking no' > .ssh/config
chmod 400 ~/.ssh/config

4. Install required packages:
sudo dnf install -y epel-release
sudo dnf install -y wget vim tar zip unzip lz4 pigz nmon sysstat numactl

ksh psmisc
5. Download and install the MySQL repository:

sudo dnf install -y https://dev.mysql.com/get/mysql80-community-release-
el8-1.noarch.rpm

6. Install the MySQL 8.0.22 client:
sudo dnf --disablerepo=AppStream install -y mysql*8.0.22*

7. Download HammerDB 3.3:
sudo wget https://github.com/TPC-

Council/HammerDB/releases/download/v3.3/HammerDB-3.3-Linux.tar.gz
8. Extract the HammerDB package:

tar -xf HammerDB-3.3-Linux.tar.gz
9. Download and extract the nmonchart tool:

wget https://sourceforge.net/projects/nmon/files/nmonchart40.tar
tar -xf nmonchart40.tar ./nmonchart

10. Copy all scripts and config files in the appendix section to the HammerDB mysql-client instance.
11. Shutdown the instance:

sudo poweroff

Configuring MySQL for database creation and backup
In this section, we list the various MySQL settings that we changed and the steps to do so. To see the MySQL
configuration files we used for each instance type, see Appendix C. To see the exact settings for each instance, please
refer to Table 4.
Configuring the mysql instance and starting the database

1. Log into the MySQL instance via ssh.
2. Copy the appropriate my.cnf config file from the appendix depending on your mysql instance and target

database size. Example for 1600 warehouse database:
cp -p /etc/my.cnf{,.bak}
cp -f my-1600.cnf /etc/my.cnf

3. Run the mysql_host_prepare.sh script:
sudo ./mysql_host_prepare.sh

Creating the database schema with HammerDB
1. Login to the mysql-client instance via ssh.
2. Navigate to the HammerDB directory:

cd HammerDB-3.3
3. Start hammerdbcli:

./hammerdbcli
4. Set the following variables:

dbset db mysql
diset connection mysql_host <IP_ADDRESS>
diset tpcc mysql_user root
diset tpcc mysql_pass <Password>
diset tpcc mysql_count_ware <DB_SIZE>
diset tpcc mysql_partition true
diset tpcc mysql_num_vu 8

A Principled Technologies report 7

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

diset tpcc mysql_storage_engine innodb
5. Build the schema:

Buildschema

Backing up the database
1. Log into the mysql instance.
2. Shutdown the database:

systemctl stop mysqld
3. Delete the log files:

cd /mnt/mysqldata/
rm -f data/ib_logfile*

4. Back up the database:
tar -cf- data/ | pigz -9 -c > mysql_tpcc_<DB_SIZE>warehouses_data.tar.gz

5. Repeat all database creation steps for all warehouse sizes.

Running the tests
In this section, we list the steps to run the HammerDB TPC-C-like test on the instances under test. Refer to Table 4 to see
the number of users to run on each instance.

1. Log into the hammerdb mysql-client instance via ssh.
2. Execute the run_test.sh script, substituting IP_ADDRESS with the AWS private IP of the mysql instance, and

DB_SIZE with the number of warehouses. You may tune additional parameters and configuration options by
modifying the script and editing the variables at the start of the file.

./run_test.sh <IP_ADDRESS> <DB_SIZE>
3. The script will prepare the mysql instance, restore the correct DB_SIZE, and run the test automatically. Results

will be saved to the "results" folder in your home directory by default.
4. To parse all results run the parse_results.sh script:

./parse_results.sh
5. After destroying the virtual users, login to the mysql instance and restore the database.
6. Terminate the mysql instance.
7. Repeat these steps two more times for a total of three runs. Do this for each mysql instance type and warehouse

size combination.
Instance type r5n.8xlarge m4.16xlarge
Number of vCPU 32 64
Memory (GB) 256 256
Data disk (size, IOPs) 512, 16,000 512, 16,000
Number of warehouses 1,600 1,600
Number of users 96 96
Warmup (min) 5 5
Runtime (min) 10 10

 Table 4: User data and other parameters for each instance we tested.

APPENDIX C: SCRIPTS
Below is the text of the scripts we used for MySQL. These include the exact settings we used for our tests.
mysql_host_prepare.sh

#!/bin/bash
setenforce 0
sed -i 's/SELINUX=.*/SELINUX=Permissive/' /etc/selinux/config

A Principled Technologies report 8

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

systemctl disable --now firewalld
System tuning ####
tuned-adm profile virtual-guest
sed -i -e '/vm.swappiness/d' -e '/fs.aio-max-nr/d' /etc/sysctl.conf
cat <<EOF >>/etc/sysctl.conf
vm.swappiness = 1
fs.aio-max-nr = 1048576
EOF
sysctl -p
Install tools ####
dnf install -y epel-release
dnf install -y wget vim tar zip unzip lz4 pigz nmon sysstat numactl
Install MySQL ####
dnf install -y https://dev.mysql.com/get/mysql80-community-release-el8-

1.noarch.rpm
dnf --disablerepo=AppStream install -y mysql-community-server
systemctl disable --now mysqld
Prepare storage ####
umount -v /mnt/mysqldata
mkdir -p /mnt/mysqldata
sed -i '/mysqldata/d' /etc/fstab
if [-e /dev/nvme1n1]; then
mkfs.xfs -f /dev/nvme1n1
echo '/dev/nvme1n1 /mnt/mysqldata xfs defaults,nofail,x-systemd.device-

timeout=5 0 2' >> /etc/
fstab
else
mkfs.xfs -f /dev/xvdb
echo '/dev/xvdb /mnt/mysqldata xfs defaults,nofail,x-systemd.device-

timeout=5 0 2' >> /etc/
fstab
fi
mount -v /mnt/mysqldata
restorecon -Rv /mnt/mysqldata

run_test.sh

#!/bin/bash
echo "Usage: $0 TEST_HOST WAREHOUSE_COUNT"
TEST_HOST=${1:-remotehost}
CLIENT_HOST=$(hostname -s)
WAREHOUSE_COUNT=${2}
APP=mysql
HOST_PREPARE=${APP}_host_prepare.sh
MYCNF=my-${WAREHOUSE_COUNT}.cnf
HDB_DIR=HammerDB-3.3/
HDB_SCRIPT=hdb_tpcc_${APP}_${WAREHOUSE_COUNT}wh.tcl
HDB_RUN=run_${HDB_SCRIPT}
RUNNING_FILE=benchmark_running.txt
RAMPUP=5 # minutes
DURATION=10 # minutes
STEP=2 # seconds

A Principled Technologies report 9

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

IDLE=30 # seconds
WARMUP=$((RAMPUP*60))
RUNTIME=$((DURATION*60))
SAMPLES_TOTAL=$(((WARMUP+RUNTIME)/STEP+5))
TIMESTAMP=$(date '+%Y%m%d_%H%M%S')
Check for files
if [! -e ${HOST_PREPARE}]; then
echo "Missing host prepare script: ${HOST_PREPARE}"
exit
fi
if [! -e ${MYCNF}]; then
echo "Missing my.cnf config: ${MYCNF}"
exit
fi
if [! -e ${HDB_DIR}/hammerdbcli]; then
echo "Missing hammerdbcli missing: ${HDB_DIR}/hammerdbcli"
exit
fi
if [! -e ${HDB_SCRIPT}]; then
echo "Missing HammerDB script: ${HDB_SCRIPT}"
exit
fi
Test SSH host access
sed -i "/${TEST_HOST}/d" ~/.ssh/known_hosts
ssh ${TEST_HOST} 'hostname -f' || exit
Get AWS info
REMOTE_HOSTNAME="$(ssh ${TEST_HOST} 'hostname -s')"
INSTANCE_TYPE="$(ssh ${TEST_HOST} 'curl -s

http://169.254.169.254/latest/meta-data/instance-type |
sed -e "s/ //g"')"
echo "INSTANCE_TYPE: ${INSTANCE_TYPE}"
INSTANCE_CPU="$(ssh ${TEST_HOST} 'awk "/model name/{print \$7\$8;exit}"

/proc/cpuinfo | sed -e "s/
//g" -e "s/CPU//"')"
echo "INSTANCE_CPU: ${INSTANCE_CPU}"
sleep 1
Check if benchmark is already running
if [-e ${RUNNING_FILE}]; then
echo "Benchmark already running: $(cat ${RUNNING_FILE})"
RUNNING_HOST=$(awk '{print $1}' ${RUNNING_FILE})
Process MySQL database transactions in Amazon Web Services faster with

newer May 2021 (Revised) | 10
instances powered by 2nd Generation Intel Xeon Scalable processors –

Cascade Lake
if [["${RUNNING_HOST}" == "${TEST_HOST}"]]; then
echo "Test already running on the same remote host. Exiting..."
exit
fi
sleep 3
echo "If this is incorrect manually remove the benchmark running file:

${RUNNING_FILE}"
sleep 3

A Principled Technologies report 10

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

echo "Benchmark will pause after restoring database until current
benchmark finishes."

sleep 3
fi
Prepare Test Host
echo -e "\nPreparing test host.\n"
scp -p ${HOST_PREPARE} ${TEST_HOST}:host_prepare.sh
ssh ${TEST_HOST} "sudo ./host_prepare.sh"
scp ${MYCNF} ${TEST_HOST}:tmp-my.cnf
ssh ${TEST_HOST} "sudo systemctl stop ${APP}d ; sudo cp -vf tmp-my.cnf

/etc/my.cnf"
ssh ${TEST_HOST} "curl

https://gyasi.s3.amazonaws.com/${APP}_tpcc_${WAREHOUSE_COUNT}warehouse
s_data.

tar.gz | pigz -d -c | sudo tar -C /mnt/${APP}data -xf- ; sync"
ssh ${TEST_HOST} "sudo systemctl start ${APP}d && \
sleep 10 && \
sync && \
sudo systemctl stop ${APP}d && \
sudo umount -v /mnt/${APP}data && \
sudo mount -v /mnt/${APP}data && \
sudo systemctl start ${APP}d" || exit
Check if benchmark is already running and if so wait till it finishes
if [-e ${RUNNING_FILE}]; then
echo "Benchmark running: $(cat ${RUNNING_FILE})"
echo "Please wait for it to finish or manually remove the benchmark

running file: ${RUNNING_FILE}"
date
echo -n "Waiting"
while [-e ${RUNNING_FILE}];
do
echo -n "."
sleep ${STEP}
done
echo "Done!"
date
fi
echo "${TEST_HOST} ${WAREHOUSE_COUNT} ${INSTANCE_TYPE} ${INSTANCE_CPU}

${TIMESTAMP}" > ${RUNNING_
FILE}
Make results folder
echo -e "\nCreating results folder and saving config files.\n"
RESULTS_DIR=results/${APP}_${INSTANCE_TYPE}_${INSTANCE_CPU}_${TIMESTAMP}
mkdir -p ${RESULTS_DIR}
RESULTS_FILE=${APP}_${INSTANCE_TYPE}_${INSTANCE_CPU}_${TIMESTAMP}
Copy config files to results folder
cp -pvf ${0} ${RESULTS_DIR}/
cp -pvf ${HOST_PREPARE} ${RESULTS_DIR}/
cp -pvf ${MYCNF} ${RESULTS_DIR}/
cp -pvf ${HDB_SCRIPT} ${RESULTS_DIR}/
Copy client info to results folder
sudo dmidecode > ${RESULTS_DIR}/client_dmidecode.txt

A Principled Technologies report 11

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

dmesg > ${RESULTS_DIR}/client_dmesg.txt
lscpu > ${RESULTS_DIR}/client_lscpu.txt
rpm -qa | sort > ${RESULTS_DIR}/client_rpms.txt
curl -s http://169.254.169.254/latest/meta-data/placement/availability-

zone > ${RESULTS_DIR}/client_
av.txt
Copy server info to results folder
Process MySQL database transactions in Amazon Web Services faster with

newer May 2021 (Revised) | 11
instances powered by 2nd Generation Intel Xeon Scalable processors –

Cascade Lake
ssh ${TEST_HOST} 'sudo dmidecode' > ${RESULTS_DIR}/server_dmidecode.txt
ssh ${TEST_HOST} 'dmesg' > ${RESULTS_DIR}/server_dmesg.txt
ssh ${TEST_HOST} 'lscpu' > ${RESULTS_DIR}/server_lscpu.txt
ssh ${TEST_HOST} 'rpm -qa | sort' > ${RESULTS_DIR}/server_rpms.txt
ssh ${TEST_HOST} 'curl -s http://169.254.169.254/latest/meta-

data/placement/availability-zone' >
${RESULTS_DIR}/server_av.txt
Save memory and disk info
cat /proc/meminfo > ${RESULTS_DIR}/client_meminfo.txt
ssh ${TEST_HOST} 'cat /proc/meminfo' > ${RESULTS_DIR}/server_meminfo.txt
ssh ${TEST_HOST} 'df -T --sync' > ${RESULTS_DIR}/server_df.txt
Prepare HammerDB run script
sed -e "s/dbset db .*/dbset db ${APP}/" \
-e "s/_host.*/_host ${TEST_HOST}/" \
-e "s/_count_ware.*/_count_ware ${WAREHOUSE_COUNT}/" \
-e "s/_rampup.*/_rampup ${RAMPUP}/" \
-e "s/_duration.*/_duration ${DURATION}/" \
${HDB_SCRIPT} > ${HDB_DIR}/${HDB_RUN}
cp -pvf ${HDB_DIR}/${HDB_RUN} ${RESULTS_DIR}/
Prepare nmon on client and server
sudo killall -q -w nmon ; sudo sync ; sudo rm -f /tmp/client.nmon
ssh ${TEST_HOST} "sudo killall -q -w nmon ; sudo sync ; sudo rm -f

/tmp/server.nmon"
Idle wait for DB to settle
echo -e "\nIdle benchmark for ${IDLE} seconds."
sleep ${IDLE}
Start nmon on client and server and wait 1 step
sudo nmon -F /tmp/client.nmon -s${STEP} -c$((SAMPLES_TOTAL)) -J -t
ssh ${TEST_HOST} "sudo nmon -F /tmp/server.nmon -s${STEP} -

c$((SAMPLES_TOTAL)) -J -t"
sleep ${STEP}
Run benchmark
echo -e "\nRunning benchmark for $((RAMPUP+DURATION)) minutes!"
rm -f /tmp/hammerdb.log
pushd ${HDB_DIR}
./hammerdbcli auto ${HDB_RUN}
pushd
Stop nmon and copy to results folder on client and server
ssh ${TEST_HOST} "sudo killall -w nmon"
sudo killall -w nmon
cp -vf /tmp/client.nmon ${RESULTS_DIR}/client_${RESULTS_FILE}.nmon

A Principled Technologies report 12

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

scp ${TEST_HOST}:/tmp/server.nmon
${RESULTS_DIR}/server_${RESULTS_FILE}.nmon

Save results
cp -vf /tmp/hammerdb.log ${RESULTS_DIR}/${RESULTS_FILE}_hammerdb.log
Parse nmon files using nmonchart
for nmonfile in 'find ${RESULTS_DIR}/*.nmon';
do
./nmonchart $nmonfile
done
Update memory and disk info
cat /proc/meminfo >> ${RESULTS_DIR}/client_meminfo.txt
ssh ${TEST_HOST} 'cat /proc/meminfo' >> ${RESULTS_DIR}/server_meminfo.txt
ssh ${TEST_HOST} 'df -T --sync' >> ${RESULTS_DIR}/server_df.txt
Shutdown server
ssh ${TEST_HOST} 'sudo poweroff'
Remove benchmark running file
rm -f ${RUNNING_FILE}

parse_results.sh
#!/bin/bash
RAMPUP=5 # minutes
STEP=2 # seconds
SKIP=$(((RAMPUP*60)/STEP+1))
echo "RAMPUP: ${RAMPUP} minutes"
echo "STEP: ${STEP} seconds"
echo "SKIP: ${SKIP} records"
echo -e "Benchmark\tInstance\tCPU type\tTimestamp\tTPM\tNOPM\tServer

CPU%\tClient CPU%\tServer RPMs\
tClient RPMs\tServer AZ\tClient AZ"
for result in 'find results/* -type d | sort -V';
do
echo "$result" | awk -F'[/,_:]'

'{printf("%s\t%s\t%s\t%d\t",$2,$3,$4,$5$6)}'
for hammerdb in $result/*_hammerdb.log; do
[-f "$hammerdb"] || continue
awk '/NOPM/{printf("%d\t%d\t",$7,$11)}' ${hammerdb}
done
for server in $result/server_*.nmon; do
[-f "$server"] || continue
awk -F',' "/CPU_ALL/{rows+=1;if(rows>${SKIP})

{count+=1;idle+=\$6}}END{printf(\"%.2f\t\",100-
idle/count)}" $server
done
for client in $result/client_*.nmon; do
[-f "$client"] || continue
awk -F',' "/CPU_ALL/{rows+=1;if(rows>${SKIP})

{count+=1;idle+=\$6}}END{printf(\"%.2f\t\",100-
idle/count)}" $client
done
SERVER_CKSUM=$(sort ${result}/server_rpms.txt | sha1sum)
CLIENT_CKSUM=$(sort ${result}/client_rpms.txt | sha1sum)

A Principled Technologies report 13

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

echo -en "${SERVER_CKSUM::7}\t${CLIENT_CKSUM::7}\t$(cat
${result}/server_av.txt)\t$(cat ${result}/

client_av.txt)"
echo
done

hdb_tpcc_mysql_1600wh.tcl
#!/bin/tclsh
puts "SETTING CONFIGURATION"
global complete
proc wait_to_complete {} {
global complete
set complete [vucomplete]
if {!$complete} { after 5000 wait_to_complete } else { exit }
}
dbset db mysql
diset connection mysql_host 127.0.0.1
diset connection mysql_port 3306
diset tpcc mysql_user root
diset tpcc mysql_pass SecureP@ssw0rd1234
diset tpcc mysql_storage_engine innodb
diset tpcc mysql_partition true
diset tpcc mysql_driver timed
diset tpcc mysql_count_ware 1600
diset tpcc mysql_num_vu 96
diset tpcc mysql_rampup 2
diset tpcc mysql_duration 5
vuset logtotemp 1
loadscript
vuset vu 96
vucreate
vurun
wait_to_complete
vwait forever

my-1600.cnf
[mysqld]
datadir=/mnt/mysqldata/data
default_authentication_plugin=mysql_native_password
socket=/var/lib/mysql/mysql.sock
log-error=/var/log/mysqld.log
pid-file=/var/run/mysqld/mysqld.pid
port=3306
bind_address=0.0.0.0
general
max_connections=4000
table_open_cache=8000
table_open_cache_instances=16
back_log=1500
default_password_lifetime=0
ssl=0

A Principled Technologies report 14

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

performance_schema=OFF
max_prepared_stmt_count=128000
skip_log_bin=1
character_set_server=latin1
collation_server=latin1_swedish_ci
transaction_isolation=REPEATABLE-READ
files
innodb_file_per_table
innodb_log_file_size=1024M
innodb_log_files_in_group=64 #scale
innodb_open_files=4000
buffers
innodb_buffer_pool_size=192000M #scale
innodb_buffer_pool_instances=16
innodb_log_buffer_size=64M
tune
innodb_doublewrite=0
innodb_thread_concurrency=0
innodb_flush_log_at_trx_commit=0
innodb_max_dirty_pages_pct=90
innodb_max_dirty_pages_pct_lwm=10
join_buffer_size=32K
sort_buffer_size=32K
innodb_use_native_aio=1
innodb_stats_persistent=1
innodb_spin_wait_delay=6
innodb_max_purge_lag_delay=300000
innodb_max_purge_lag=0
innodb_flush_method=O_DIRECT_NO_FSYNC
innodb_checksum_algorithm=none
innodb_io_capacity=8000
innodb_io_capacity_max=16000
innodb_lru_scan_depth=9000
innodb_change_buffering=none
innodb_read_only=0
innodb_page_cleaners=4
innodb_undo_log_truncate=off
perf special
innodb_adaptive_flushing=1
innodb_flush_neighbors=0
innodb_read_io_threads=16
innodb_write_io_threads=16
innodb_purge_threads=4
innodb_adaptive_hash_index=0
monitoring
innodb_monitor_enable='%'

A Principled Technologies report 15

Save on uptime and licensing costs for Amazon EC2 instances
by upgrading to newer instances with fewer vCPUs

Principled Technologies is a registered trademark of Principled Technologies, Inc.
All other product names are the trademarks of their respective owners.

DISCLAIMER OF WARRANTIES; LIMITATION OF LIABILITY:
Principled Technologies, Inc. has made reasonable efforts to ensure the accuracy and validity of its testing, however,
Principled Technologies, Inc. Specifically disclaims any warranty, expressed or implied, relating to the test results and
analysis, their accuracy, completeness or quality, including any implied warranty of fitness for any particular purpose.
All persons or entities relying on the results of any testing do so at their own risk, and agree that Principled
Technologies, Inc., its employees and its subcontractors shall have no liability whatsoever from any claim of loss or
damage on account of any alleged error or defect in any testing procedure or result.

In no event shall Principled Technologies, Inc. be liable for indirect, special, incidental, or consequential damages in
connection with its testing, even if advised of the possibility of such damages. In no event shall Principled Technologies,
Inc.’s liability, including for direct damages, exceed the amounts paid in connection with Principled Technologies, Inc.’s
testing. Customer’s sole and exclusive remedies are as set forth herein.

